145 research outputs found

    An Analysis of Packet Fragmentation Impact in LPWAN

    Full text link
    Packet fragmentation has mostly been addressed in the literature when referring to splitting data that does not fit a frame. It has received attention in the IoT community after the 6LoWPAN working group of IETF started studying the fragmentation headers to allow IPv6 1280 B MTU to be sent over IEEE 802.15.4 networks supporting a 127 B MTU. In this paper, and following some of the recent directions taken by the IETF LPWAN WG, an analysis of packet fragmentation in LPWANs has been done. We aim to identify the impact of sending the data in smaller fragments considering the restrictions of industrial duty-cycled networks. The analyzed parameters were the energy consumption, throughput, goodput and end to end delay introduced by fragmentation. The results of our analysis show that packet fragmentation can increase the reliability of the communication in duty-cycle restricted networks. This is of especial relevance when densifying the network. We observed relevant impact in energy consumption and extra latency, and identified the need for acknowledgements from the gateway/sink to exploit some of the benefits raised by fragmentation.Comment: paper accepted and presented at IEEE Wireless Communications and Networking Conference, 15-18 April, Barcelona, Spai

    Aggressive Fragmentation Strategy for Enhanced Network Performance in Dense LPWANs

    Full text link
    Low Power Wide Area Networks (LPWANs) are gaining ground in the IoT landscape and, in particular, for Industrial IoT applications. However, given the strict duty cycle restrictions (e.g. 1% in SubGHz bands) and the limited power supply of devices, requirements of some applications can not always be met. This paper analyzes the potential of the combination of packet fragmentation -in the direction of the IETF LPWAN working group- and negative group acknowledgement (NACK) in LoRaWAN networks, a widespread LPWAN technology. Results show that the proposed strategy can lead to significant gains in terms of goodput and energy efficiency under congested situations.Comment: 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC

    LoRa Multi-Hop Networks for Monitoring Underground Mining Environments

    Full text link
    Internet of Things applications have gained widespread recognition for their efficacy in typical scenarios, such as smart cities and smart healthcare. Nonetheless, there exist numerous unconventional situations where IoT technologies have not yet been massively applied, though they can be extremely useful. One of such domains is the underground mining sector, where enhancing automation monitoring through wireless communications is of essential significance. In this paper, we focus on the development, implementation, and evaluation of a LoRa-based multi-hop network tailored specifically for monitoring underground mining environments, where data traffic is sporadic, but energy efficiency is of paramount importance. We hence define a synchronization framework that makes it possible for the nodes to sleep for most of the time, waking up only when they need to exchange traffic. Notably, our network achieves a sub 40us proven synchronization accuracy between parent-child pairs with minimum overhead for diverse topologies, rendering it highly viable for subterranean operations. Furthermore, for proper network dimensioning, we model the interplay between network's throughput, frame size, and sampling periods of potential applications. Moreover, we propose a model to estimate devices' duty cycle based on their position within the multi-hop network, along with empirical observations for its validation. The proposed models make it possible to optimize the network's performance to meet the specific demands that can arise from the different subterranean use cases, in which robustness, low power operation, and compliance with radio-frequency regulations are key requirements that must be met

    REMOTE, a Wireless Sensor Network Based System to Monitor Rowing Performance

    Get PDF
    In this paper, we take a hard look at the performance of REMOTE, a sensor network based application that provides a detailed picture of a boat movement, individual rower performance, or his/her performance compared with other crew members. The application analyzes data gathered with a WSN strategically deployed over a boat to obtain information on the boat and oar movements. Functionalities of REMOTE are compared to those of RowX [1] outdoor instrument, a commercial wired sensor instrument designed for similar purposes. This study demonstrates that with smart geometrical configuration of the sensors, rotation and translation of the oars and boat can be obtained. Three different tests are performed: laboratory calibration allows us to become familiar with the accelerometer readings and validate the theory, ergometer tests which help us to set the acquisition parameters, and on boat tests shows the application potential of this technologies in sports

    Understanding the limits of LoRaWAN

    Full text link
    The quick proliferation of LPWAN networks, being LoRaWAN one of the most adopted, raised the interest of the industry, network operators and facilitated the development of novel services based on large scale and simple network structures. LoRaWAN brings the desired ubiquitous connectivity to enable most of the outdoor IoT applications and its growth and quick adoption are real proofs of that. Yet the technology has some limitations that need to be understood in order to avoid over-use of the technology. In this article we aim to provide an impartial overview of what are the limitations of such technology, and in a comprehensive manner bring use case examples to show where the limits are
    corecore